基于分层强化学习的多智能体博弈策略生成方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:典型基于深度强化学习的多智能体对抗策略生成方法采用“分总” 框架,各智能体基于部分可观测信息生成策略并进行决策,缺乏从整体角度生成对抗策略的能力,大大限制了决策能力。为了解决该问题,基于分层强化学习提出改进的多智能体博弈策略生成方法。基于分层强化学习构建观测信息到整体价值的决策映射,以最大化整体价值作为目标构建优化问题,并推导了策略优化过程,为后续框架结构和方法实现的设计提供了理论依据;基于决策映射与优化问题构建,采用神经网络设计了模型框架,详细阐述了顶层策略控制模型和个体策略执行模型;基于策略优化方法,给出详细训练流程和算法流程;采用星际争霸多智能体对抗(StarCraft Multi-Agent Challenge,SMAC)环境,与典型多智能体方法进行性能对比。(剩余10552字)

monitor