基于改进YOLOv8算法的实时细粒度植物病害检测

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:为解决现有识别方法在植物病害检测中遇到的密集分布、不规则形态、多尺度目标类别、纹理相似性等障碍,提出一种高性能的实时细粒度植物病害检测框架。首先,在YOLOv8主干网络和颈部设计两个新的残差块,增强特征提取和降低计算成本;其次,引入DenseNet层,并使用Hard-Swish函数作为主要激活函数,以提高模型的准确性;最后,设计PANet网络,用于保留细粒度的局部信息和改善特征融合。(剩余9548字)

目录
monitor