基于最大熵进化算法的高维多目标优化

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP18 文献标志码:A DOI:10.3969/j. issn.1673-3819.2025.05.009

Abstract:With theincreaseindatavolume,dimensionality,andthenumberofoptimizationobjectives,theconflictsbetweenobjectives intensify,makingthesolutionofmulti-objectiveoptimizationproblems increasinglycomplex.Thisisespecially trueforhigh-dimensionalheterogeneousmulti-objectiveoptimizationproblems,wherethedificultyofsolvingthemincreases significantly.Inthispaper,weproposeamaximumentropy-basedreferencevector-guidedevolutionaryalgorithm aimedat solving many-objectiveoptimization problems.Bycombining reference point strategies with evolutionaryalgorithm search mechanisms,the proposed methodachieves complementarycooperation between the ideal and worst reference points, therebyimprovingtheeficiencyofoptimization.Thealgorithmreliesonasetofadaptivelyselectedreference vectorsandoptimizes them using Bayesian maximumentropy,focusing on balancing diversityand convergence during theoptimization processThrough comparative experimentsonseveral benchmark problems,theproposed K-RVEAalgorithmdemonstrates significant advantages,verifying the feasibility and effectiveness of the method.

Keywords:many-objective optimization;maximum entropy;diversity;convergence

在经济和工业领域,许多高维、异构的多目标优化问题日益凸显。(剩余11454字)

monitor
客服机器人