网格化时空数据关联分析方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP393.028 文献标志码:A DOI:10.3969/j. issn.1673-3819.2025.05.008

Abstract:With therapid development of informationperception methods,thevolumeof multi-source heterogeneous data has increasedexplosively.Traditional methodsexhibitobviouslimitations inhanding inconsistent spatio-temporal scalesandinformationredundancy.Inthis paper,the principles of spatiotemporal grid codinganditsapplicationareintroducedandan innovativeunfied spatiotemporal gridbaseddataassociationanalysis method is proposed toconduceresearchonspatio-temporalinformationextraction,nifiedencodingandidentificationofspatio-temporal giddata,crossscalespati-temporaldata sharingand dynamic corelation analysis.Our method constructs aspatio-temporal grid framework forunified alignmentof heterogeneous multi-soucedataspatialcordinates,temporalbaselinesynchronization,andatributecorelation withbehaviors.Inadition,aspatio-temporal gridframeworkisconstructedtoalignspatialcoordinatesofmulti-source heterogeneous data,synchronize temporalbaseline,andcorrelateatributebehaviors.Theresultof simulationof typicallow-altitudeairspaceplanning for Unmanned Aerial Vehicles verifies thatour proposed method is enable to efectivelyenhance the managementandutilizationefciencyinclasification,integration,andcorrlationanalysisofmulti-source heterogeneous data.

Key words: spatio-temporal grid; cross-scale data sharing;dynamic correlation association

随着信息感知手段与方式的快速发展,现有数据处理分析方法存在计算效率低、有效信息提取难等问题,难以满足数据有效管理运用等需求。(剩余6916字)

monitor
客服机器人