面向高价值目标识别的SKConv-MobileNetV3改进

打开文本图片集
关键词:计算机应用;目标识别;轻量级网络;MobileNetV3;自适应选择性卷积中图分类号:TP391.41 文献标志码:A DOI:10.3969/j.issn. 1673-3819.2025.05.006
Abstract:High-valuetarget recognitionusuallrequires high timelinessandaccuracy,andthelarge numberof parameters of traditionaldepconvolutionalneuralnetworksleads toalargenumberofapplicationscenariosbeing limited.Ahigh-value targetrecognitionmethodbasedon SKCony-MobileNetV3isproposed,byfusingtherecognitionresultsof SKConvconvolutionalkernelwiththeweightedoutputfeaturemapsofMobileNetV3convolutionallayer,andusingtheatentionmechanismto selectthemostrelevantimagecontentforfeature extraction,wecanimprovethefeatureinformation extractioncapabilityof theSKCon-MobileNetV3model whileimproving learning eficiency,under theconditionthatthenumberof parametersremainsunchanged,MobileNetV3model’sabilitytoextractfeatureinformation,whileimprovingthelearningeficiencyand recognitionaccuracy.Through theabovealgorithmimprovementandoptimization,sevenhigh-valuetargets withstrongcorrelation are selected in the NWPU-RESISC45 datasetand tested,and the resultsshow that the accuracy is improved by 7.01% (204号 compared withMobileNetV2 and 4,08% compared withMobileNetV3,which isable to better improve the recognitionaccuracy of high-value target recognition accuracy.
Keywords:computerapplication;targetidentification;lightweightnetwork;MobileNetV3;selectivekernelconvolution
信息化战争条件下,卫星、雷达、无人机侦察平台、精确制导弹药等的应用,使得战场环境日益复杂多变,作战形势发生深刻变化。(剩余10235字)