面向无人艇视角的海上光学图像目标检测算法研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:E917 文献标志码:A DOI:10.3969/j. issn.1673-3819.2025.05.007

Abstract:During theapplication of unmanned surface vehicles (USVs)innatural sea areas,issuessuch as low-quality opticalimageimaging,localizedtargetfeaturesanddepth-directionaldistortioncausedbyside-viewingangles,lensdeforation duetosaltwaterdroplets,andthecoexistenceofextremelylargeandsmalltargetsocur.Thesephenomenaleadtoadecline intheperformanceofdeeplearning-basedimage targetdetectionalgorithms,resulting inhighratesofmisseddetectiosand falsealarms.Consequently,thiscauses thecolisionavoidancedecision-makingalgorithms todivergeortriggerfrequentemergencyalarms.To enhanceobjectdetection acuracyfor USVoptical images,,this paper proposes anoptimizedframework basedontheYOLOv8 model.First,theCopy-Pastealgorithmandunpaired image style transferalgorithmare introduced to generate multi-viewtargetimagesandlow-qualityimagescausedbyadverseenvironmentalconditions,addressing theimbalanceintheproportionoflow-qualityimagesinthedataset.Second,adedicateddetectionheadforsmalltargetsisadedto thedetectionnetwork,andthelossfunctionisoptimizedtoenhancethedetectioncapabilityforsmalltargetswhilepreserving theoriginal model’sperformanceonlargerobjects.Thenewlydevelopedobjectdetection model,trainedontheaugmented dataset,achieves an average precision of 96.2% on the test set.

Keywords:USV;YOLOv8;data augmentation;target detection

随着人工智能、传感器技术等飞速发展和深度应用,自主无人艇得以蓬勃发展,成为海洋开发与利用的新质平台。(剩余13121字)

monitor
客服机器人