基于结构化建模方法的计算机视觉遮挡姿态估计研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:本研究聚焦于计算机视觉领域的遮挡姿态估计问题,采用结构化建模方法,深入分析遮挡条件下的姿态特征。通过构建遮挡鲁棒性模型,优化姿态估计算法,有效提升了在复杂遮挡环境下的姿态估计精度与鲁棒性,为计算机视觉技术的发展与应用提供了有力支持。

关键词:结构化建模;计算机视觉;姿态估计;数据增强;图像裁剪

doi:10.3969/J.ISSN.1672-7274.2025.01.019

中图分类号:TP 391                 文献标志码:A            文章编码:1672-7274(2025)01-00-03

Research on Occluded Pose Estimation in Computer Vision Based on

Structured Modeling Approach

LIN Ziyao

(North China University of Technology, Beijing 100144, China)

Abstract: This study focuses on the problem of pose estimation with occlusion in the field of computer vision. By adopting a structured modeling approach, it deeply analyzes pose features under occlusion conditions. Through the construction of an occlusion-robust model and the optimization of pose estimation algorithms, the accuracy and robustness of pose estimation in complex occlusion environments are effectively improved, providing strong support for the development and application of computer vision technologies.

Keywords: structured modeling; computer vision; pose estimation; data augmentation; image cropping.

0   引言

本文致力于深入挖掘基于结构化建模方法的遮挡姿态估计技术,通过创新模型架构、优化求解策略及遮挡感知机制,旨在全面提升姿态估计的准确性与鲁棒性,推动相关领域技术迈向新的高度。(剩余4256字)

目录
monitor