基于Tensorflow框架的手写数字识别

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:文章利用Tensorflow深度学习结构来构建神经网络模型,并采用激活函数对MINIST进行训练;加入特征转换过程,利用梯度下降优化器,将数据降维;在输出层上将全连接模型和Softmax层相结合,经过交叉验证,达到90%以上的识别率。

关键词:Tensorflow;MNIST;梯度下降优化器;全连接模型

doi:10.3969/J.ISSN.1672-7274.2023.02.044

中图分类号:TP 3                文献标示码:A                  文章编码:1672-7274(2023)02-0-04

Handwritten Digit Recognition Based on Tensorflow Framework

LI Linfeng, CHEN Jiayi, ZHENG Jiawei, LI Tong, WU Junqin

(School of Computer Science, Southwest Petroleum University, Chengdu 610500, China)

Abstract: This paper uses Tensorflow deep learning structure to build neural network model, and uses activation function to train MINIST; Add feature transformation process and use gradient descent optimizer to reduce data dimension; In the output layer, the full connection model is combined with the Softmax layer. After cross validation, the recognition rate is more than 90%.

Key words: Tensorflow; MINIST; gradient descent optimizer; full connection layer

0   引言

手写体数字识别的实质就是预测,预测出该图片属于哪一个类别就认为这幅图片则为哪一个数字。(剩余4647字)

目录
monitor