基于大数据的网络异常行为检测技术研究
摘要:文章所述方案充分发挥大数据处理技术与机器学习在网络异常监测中的优势,有效提升了网络异常行为监测的处理速度、准确性,大大降低了误报率,对大数据处理环境下网络异常行为监测具有一定的理论意义与现实应用价值。
关键词:大数据技术;网络异常行为;技术研究
doi:10.3969/J.ISSN.1672-7274.2023.02.011
中图分类号:TP 393.08 文献标示码:A 文章编码:1672-7274(2023)02-00-03
Research on Network Abnormal Behavior Detection Technology Based on Big Data
GAO Juxin
(Shanxi Institute of Applied Science and Technology, Lvliang 033000, China)
Abstract: The scheme described in this paper gives full play to the advantages of big data processing technology and machine learning in network anomaly monitoring, effectively improves the processing speed and accuracy of network anomaly behavior monitoring, and greatly reduces the rate of false positives. It has certain theoretical significance and practical application value for the monitoring of network abnormal behavior in the big data processing environment.
Key words: big data technology; network abnormal behavior; technical study
1 基于大数据的网络异常行为检测模型构建
基于大数据的网络异常分析模型通过提供大量安全数据的采集和存储方案,以及分布式消息队列、分布式离线分析组件以及流式处理组件,满足数据收集和预处理、数据离线分析、数据流式处理、数据存储等一系列需求。(剩余5404字)