气象因素驱动的布地奈德高用药日预测集成学习模型的构建与比较

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号R952 文献标志码A 文章编号1001-0408(2025)21-2723-04

DOI 10.6039/j.issn.1001-0408.2025.21.18

ABSTRACTOBJECTIVETo construct ensemblelearning modelsforpredicting high-usedaysof budesonide based on meteorologicalfactors,therebyprovidingreferenceforhospitalpharmacymanagement.METHODSMeteorologicaldatafor2024 andoutpatientbudesonideusagedatafromthejurisdictionofSanming HospitalofIntegratedTraditional ChineseandWestern Medicinewerecollcted.High-usedaysweredefinedasthe75thpercentileofoutpatientbudesonideusage,andacoresponding datasetwas established.Theprediction task was formulatedasaclasification problem,and threeensemblelearingmodels were developed:RandomForest,ExtremeGradient Bosting(XGBoost),andHistogram-based GradientBoostingClasifier.Model performancewasevaluatedusingaccuracy,precision,recall,F-score,andlog-lossModel interpretabilitywasanalyzedusing ShapleyAdditiveExplanations(SHAP).RESULTSTheHistogram-basedGradientBoosting Classifierachieved thebest performance (accuracy ,Fl-score =0.48 ),followed by XGBoost (accuracy =0.74 ,Fl-score =0.43 )and Random Forest (accuracy ⋅=0.72 ,F1-score ⋅=0.22 ).SHAP results suggested that the prediction results of the last two models have the highest correction.CONCLUsIONSEnsemble learningmodelscanefectivelypredicthigh-usedaysof budesonide,withtheHistogrambasedGradient Bosting ClasifierdemonstratingthebestpredictiveperformanceLowtemperature,high humidity,andlow atmospheric pressure show significant positive impacts on the prediction of daily budesonide usage.

KEYWORDS budesonide;meteorological factors;ensemble learning;explainable artificial intelligence

呼吸系统疾病的发生与发展受多种因素影响,气象因素作为重要的环境因素之一,对患者的疾病进展及药物使用需求具有潜在影响[-2]。(剩余4415字)

monitor
客服机器人