基于季节趋势分解的 PM2.5 浓度混合预测模型

打开文本图片集
关键词: PM2.5 浓度预测;季节趋势分解;自回归移动平均模型;长短期记忆网络;支持向量机□图分类号:P9 文献标志码:A 文章编号:0253-2395(2025)04-0829-10
Abstract: To improve the accuracy of PM2.5 concentration prediction, this paper introduces a hybrid time series forecasting model withseasonal-trendecomposition(ybrid-X12).Firstlytesasonal-tredecompositioalgorithmperfosthetaskofdecoposing PM2.5 time series intotrend-cycle,sasonaland iregularsub-sries; Then,ARIMA (Autoregressive IntegratedMovingAverage Model),LSTM(Long Short Term Memory),andSVM(Support Vector Machine)are appliedtotheabove sub-series prediction tasksespectively;Finalytefialpredictionresultcomesfromtheintegrationofthepredictedresutsofsubseries.Thesulation experiment selected PM2.5 monthly concentration fromsix major cities in North China and used MAE (MeanAbsolute Error),RMSE (Rot Mean SquareEror),andIA(IndexofAgreement)asmodelevaluationindicators.Theexperimentalresultsemonstratedthat thehybridpredictionsystemcansignificantlyenhancepredictionacuracy.Compared withthetraditionalsingle modelARIMA, LSTMand SVM,the MAE of the proposed model in Beijing is reduced by 18.72% 60.14% and 43.15% ,respectively. This verifies thattheseasonal-trenddecompositionalgorithishelpfulforminngseasonal-trendinformationintimeseries.Itcanbeocluded thatselectingappropriatealgoritmsforsubseriesithdiferentcharacteristicsensuresthefullutlzationoftheadantagesofdif ferent models, providing new ideas for PM2.5 concentration prediction.
Key words: PM2.5 concentration prediction; seasonal trend decomposition;autoregressive integrated moving average model; long short term memory; support vector machine
0 引言
城市化和工业化的快速发展带来了日益严重的大气污染问题,特别是北方地区冬季采暖及气象条件的叠加往往导致污染事件频发,严重影响人民的身体健康和生产的有序进行[1-2]。(剩余12216字)