融合VAD知识的情感分布增强细粒度情绪识别方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP39 文献标志码:A 文章编号:0253-2395(2025)04-0666-11

Abstract:Fine-grainedemotionrecognition models,whichemploydozensemotioncategories tomodelhumanemotions,arecapablecaptringsubtleemotionalexpresions moreaccuratelythantraditionalmodels.However,existingemotionpredictionodelshavenotfullyconsideredthecomplexcorelationsthatexistamongthenumerousfine-grainedemotions.Toadresthisissue, thispaperproposesanVAD(Valence-Arousal-Dominance)EmotionDistributionAugmentedFine-grainedEmotionRecognition (EDAER).EDAER models the emotional correlations in the VAD space using emotion distributions andcombines textualsemantic informationwithpsychologicalpriorsforfine-graiedemotionrecognition.TheEDAERmodelconsists treemodules:asemanticinformationmodule,anemotiondistributioninformationmodule,andafusionpredictionmodule.Thesemanticinfrmatiomodulextracts textual semanticfeaturesusingapre-trained BERT(Bidirectional Encoder Representationfrom Transformers)model; theemotiondistribution information module generates emotion distributionsforemotion words basedon VADdistancemetrics to measuretesimilaritybetweenemotions;andthefusionpredictionmodule integrates textualsemanticfeaturesandemotiondistributioninformationthroughanatentionmechanism topredictemotions.ExperimentalresultsontheGoEmotionsdatasetdemonstrate that the macro-average F1 score the EDAER model reaches 51.75% ,outperforming both theKEA(Knowledge-Embedded Attention)model,whichsesemotionlexiconsasexteralknowledge,andtheHGCN-EC(HierarchyGraphConvolutionNetworksbased EmotionRecognition)model,whichutilizesherarchcalemotionrelatioshipsasextealknowledge.Notablyfortheotion categories with fewer samples,EDAER significantly outperforms other models in terms F1 score.These results validate that modelingemotionalcorelationsintheVADspacethroughemotiondistributionscanefectivelycapture knowledgerelated torareemotions,thus improving the model's ability to recognize fine-grained emotions.

Key words:VAD emotion space; external knowledge; emotion classfication; GoEmotions

0 引言

随着自媒体时代到来,文本情绪识别成为自然语言处理领域的重要研究方向,在医疗健康,网络舆情,消费者行为分析等方面得到广泛应用[1-3]。(剩余16033字)

monitor
客服机器人