基于法条检索的生成式法律问答研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP391 文献标志码:A 文章编号:0253-2395(2025)04-0653-13

Abstract:Pre-tranedlanguagemodel-basedlegalquestionansweringsystemsstruggletoflexiblyunderstandusersintentandlack the integrationofexteralknowledge,making itdificulttoachievedesiredresults.Toadressthis,thispaper proposesafinegrainedegalquestionansweringdatasetbasedonthecriminallawarticleslibrary(FCL-QA).BasedonFCL-QA,thispaperproposes aStatutoryArticles Retrieval AugmentedQuestion AnsweringFramework (SaRAF)basedonlarge language model.Thecoreidea is tolocateteategoryofteuestintroughulti-vellasiicationothoeofatutoryarticlesthoughtategory tofacilitateretrieval,andfiallygenerate theanswerusingalargelanguage model.ExperimentalresultssowthatteSaFoutperformsbothwithouttatutoryarticlesgenerationmethodandRetrieval-augmentedGeneration(RAG)method,achievingROUGE⊥F1 score of 42.27% ,BLEU-4 score of 27.78% and BERTScore of 72.52% on the FCL-QA dataset. Key words: large language model; question answering system; retrieval augmented

0 引言

法律问答的目标是为用户提供高质量、高可靠的法律咨询,是自然语言处理技术在司法领域的重要应用。(剩余17827字)

monitor
客服机器人