面向僵尸网络DGA攻击的智能检测技术与对抗策略研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP393 文献标志码:A 文章编号:0253-2395(2025)04-0725-16

Abstract:Botnets candynamicallgenerate numerous unpredictabledomainsviaDomain GenerationAlgorithms (DGA)toelude traditionalstaticdetectio,ehancingthestealthndpersistenceofaliciosactivitis.AsDAtechnologyadvancs,tradtioale tectionmethodsarefacinggrowingchalenges.Eficientlyidentifyinganddefendingagainstthesedomainshasbecomecrucialincy bersecurity.This papercomprehensivelyanalyzes mainstreamDGAdetection technologies,includingthose basedonstatisticalfeatures,machineleaing,nddeepleaing.Itdelvesintotheirpinciples,applicationscenarios,ndperformanceucovingliita tions nfalsepositivetes,omputatioalomplexityatasesie,anddptabilitytoeGAs.Finalytepperproo vativedirectionsfordplearnng-baseddetectionandcrossdomaincollaborativedetection.Combinedwithtraffcbehavioranaly sis andgeneratio-patenblckingmecansms,webuildamulti-ayered,ntegatedDGAdeensestem,oferingideasto improve detection effectiveness,accuracy,and adaptability.

Key words: botnet; domain generation algorithm; domain detection; machine learning

0 引言

O.1研究背景与问题

随着互联网技术的快速发展和恶意软件攻击方式的持续升级,僵尸网络(Botnet)已经构成全球网络安全领域中的一个重大隐患。(剩余31730字)

monitor
客服机器人