基于Crowd⁃RetinaNet的拥挤行人检测

打开文本图片集
摘 要: 文中以RetinaNet为基础,设计一种高效的用于拥挤行人检测的网络模型。为提高特征融合性能,利用坐标注意力特征融合(CAFF)进行跨层特征融合,实现尺度特征之间高质量的语义和位置细节信息交互;为提高目标检测性能,引入任务感知检测头(TaHead)提升目标检测头的表征能力;为克服非极大值抑制算法(NMS)对遮掩目标的漏检问题,结合CrowdDet的多实例预测(MIP)算法,使用推土机距离损失算法(EMDLoss)进行模型训练,并使用Set NMS作为后处理方法,有效抑制多重冗余检测结果,最终设计出Crowd⁃RetinaNet拥挤行人检测模型。(剩余11347字)