基于分层遗传的新聚类算法应用于数据分类

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:针对FCM(模糊C均值聚类算法)对初始聚类中心的选取敏感以及梯度法易收敛到鞍点,在此基础上提出了一种分层遗传算法(HGA)优化的核模糊C均值聚类算法(HGAKFCM)来提升聚类性能,首先用分层遗传算法(HGA)在全局筛选出高品质聚类中心以替代FCM的随机产生的聚类中心,再利用高斯径向核函数改变FCM中的距离函数并且重新定义目标函数,最终根据新参数进行迭代流程。(剩余4647字)

目录
monitor