一种基于SOM改进的PCM聚类方法

打开文本图片集
摘 要:针对PCM算法在聚类计算过程中存在的初始聚类中心随机选取,聚类结果可能陷入局部最优解等问题,提出一种改进策略。利用SOM网络对数据进行初步处理,得到PCM算法的初始聚类中心,使得算法聚类效果得到明显提升。
关键词:可能性c均值聚类;自组织映射;聚类
中图分类号:TP183 文献标志码:A 文章编号:2095-2945(2022)03-0133-03
Abstract: In order to solve the problem that the initial clustering center is randomly selected and the clustering result may fall into the local optimal solution in the clustering calculation process of PCM (possibilistic c-means clustering) algorithm, an improved strategy is proposed. The initial clustering center of the PCM algorithm is obtained by using the SOM (self-organizing mapping) network to deal with the data, which improves the clustering effect of the algorithm obviously.
Keywords: PCM (possibilistic c-means clustering); SOM (self-organizing mapping); clustering
在大数据背景下,数据挖掘技术逐渐成为当今热门的研究课题。(剩余3377字)