基于SMOTE算法的岩爆烈度等级预测模型研究

打开文本图片集
中图分类号:U45 文献标识码:A 文章编号:2097-5465(2025)03-0030-08
1.Hebei GEO University,Shijiazhuang O50031,China;2.Hebei Technology Innovation Center for Intelligent
Development and Control of Underground Built Environment,Shijiazhuang O5o031,China
Abstract:Inordertosolvetheproblemofdataimbalanceintherockburstdatabase,resultinginlowpredictionaccuracyof rockburst,fivemodelswereproposedbasedonthesyntheticminorityoversampling technique(SMOTE),including SMOTErandomforest,SMOTE-gradientboostingdecisiontree,SMOTE-supprt vector machine,SMOTE-BP neural network andSMOTEconvolutionalneuralnetwork.Inthispaper,sixindicatorswereselectedandtherockburstintensitygradewasdividedintofour grades,oastoestablisharockburstindexsystem.Then,inviewoftheproblemofdataimbalanceintherockburstdatabase,the SMOTEoversampling algorithmwasused toexpandthedatabase.Finaly,fivecommonlyused machine learning models were introducedtopredictherockburstintensitylevel,andthesefivemodelswereusedtopredictheoriginalrockburstdatabaseandthe rockburstdatabaseafterSMOTEalgorithmrespectively,toverifytheefectivenessofthepretreatmentprocess.Theresultsshow that:1)Compared with the traditional model,the prediction accuracy of the model is improved by 10.000%~35.000% after the introductionof SMOTEalgorithm;2)Comparedwiththeotherfourmodels,theSMOTE-randomforestmodelhadthehighest prediction accuracy.
Keywords:rockburst;SMOTE oversamplingalgorithm;random forest;intensitylevel prediction
来稿日期:2024-12-11 DOI:10.13937/j. cnki. hbdzdxxb.2025.03.005
基金项目:中央引导地方科技发展资金项目(246Z5405G)
作者简介:李璐佳(2000—),女,河北石家庄人,硕士研究生,主要从事地质灾害及防治方面研究。(剩余10886字)