基于Akima算法和失效概率分布函数的站场异常工况预警

打开文本图片集
Early warning technology of abnormal conditions in stations based on Akima algorithm and failure probability distribution function
HU Jianlin PetroChina Huabei Oilfield Company,Renqiu O62552,China
Abstract:Toimprovetheinherentsafetylevelofoilandgasstationsandrealizereal-timeearlywarningunderabnomalconditions, thispaperintegratesthemethodbasedonpriorknowledgewithdata-drivenmethods.TheAkimaalgoritmisfrstusedtosmoththe processparameters,andtentedeviationvelocityandaveragefaulttimearecalculated.Theprobabilitydistributionofpreviousfailure dataifittddvatioeloitistegatedtoueproabilitrtioc.allsiiit issetthroughdebging.earlyaingofbnoalconditiosisompleted,andthfldverificationisaidout.euls showthatheRungephenomenondosnotappearinthecurveobtainedbytheAkimainterpolatiomethod.Thecurvepasesthroughall theoriginaldatapointsandretainsthechangetrendoftheoriginalcurve.ThewaringresultsasedontheAkimaalgorithmandfailure probabilitydisributionfunctioncanbeadvancedfurtherthantheconventionalones.Thewaringtimeofheatertemperature,flashtower presure,andseparatrlevelcanbeadvancedyO7,234,and3sspectively.Theinstabilityofparameterchangeswilgeatly shortenthewaingtihileelativelyableparameterangeswillimittedvancingofthewaingi.Thresearchlsan provide a practical reference for improving the integrity management level of the stations.
Keywords:Akima algorithm;failure probabilitydistributionfunction;abnormalconditions;earlywarning; deviationvelocity
油气站场内涉及原油脱水、原油稳定、伴生气脱水、伴生气脱酸、轻烃回收和采出水处理等多个工艺过程,涉及的介质大多具有易燃、易爆、有毒等特性,且生产过程具有连续性,一旦出现异常工况,不仅影响正常油气生产,还可能引发火灾、爆炸等重大事故[-2]。(剩余5817字)