基于CT影像组学特征的机器学习模型对症状性颈动脉斑块的诊断价值

  • 打印
  • 收藏
收藏成功


打开文本图片集

CT radiomics-based machine learning models in diagnosis for symptomatic carotid artery plaque

LIJing1²,WANGKaifeng3,ZHANGMeilan1²,SONGBowen1²,ZHAO Fengqiao²,DUHai²

GraduateSchlBatouedicalolgoferongoliUiesityfence&chologyotouina;t ofRadiologydontalialdosoa;olofsicicalieeseicalUeity 350001,China.

[Abstract]Objective:Toexplorethediagnosticeficiencyofthemachinelearning modelsbasedonCTradiomics features for symptomaticcarotidplaques.Methods:TeclinicaldataandheadandneckCTAimagesof18Opatientswereretrospectively analyzed.Atotalof18Opatientsweredivided intoasymptomaticgroup(54cases)andanasymptomaticgroup(126cases) basedonwhethertherewereischemiceventsintheipsilateraleye(transientmonocular blindnessortransientamaurosisor retinalinfarction)orischemiceventsinthecerebralhemispheres(transientischemicatackorstroke)withinthepast6months. 180caseswererandomlydividedintoatrainingset(144cases)andatestset(36cases)ataratioof8:2.Theradiomics featuresextracted from CTA images of the training set were selected through Mann-Whitney υ test,Spearman correlation analysis,andLASSOalgorithm.Themostoptimalfeatureswereretainedtoconstructfivemachinelearningmodels,XGBoost, SVM,LR,LightGBMandExtraTres.ROCcurvewasused toevaluate themodels’eficiency.Results:Inthetestset,the AUCsof the five modelsreachedO.723-0.786.ThepredictiveperformanceofExtraTresandLightGBMmodelsperformed well.TheAUC,sesitivitysecificityofExtrareesmodelinthetrainingsetwreO.781.663,0.761,andtoseintstet were0.786,0.643,0.875.AndtheAUC,sensitivityspecificityofLightGBMmodelinthetrainingsetwereO.829,0.735, 0.804 and those in the test set were O.77,0.643,0.875,respectively. Conclusion ∵ Machine learning models based on CT radiomics features can effectively identify symptomatic carotid plaques.

[Keywords] Carotid plaque;Tomography,X-ray computed;Machine learning;Radiomics;Symptomatic

脑卒中是全球第二大死亡因素[1]。(剩余9139字)

monitor