基于多参数影像组学术前预测原发性中枢神经系统淋巴瘤Ki-67表达的价值

打开文本图片集
Preoperativepredictionof multiparametricradiomics forKi-67expressionlevel inprimarycentral nervoussystem .ymphoma
LIXie,LIHuihu’,LIFan,WANYun²
'Departmentofuclearedicine,omingeople'sospital,oming4ina;Departmentofdiology,iniple's Hospital,Xinyi525300,China.
[Abstract]Objective:Toexplorethevalueofconstructingamachinelearning modelbasedonmultiparametricradiomics forpreoperativeidentificationofKi-67expresionlevelinprimarycentralnervoussystemlymphoma(PCNSL).Methods:A retrospectiveanalysiswasconstructedon203PCNSLpatients,with162patientsfromonecenterservingasthetraining setand41patientsfromanothercenterastheexternalvalidationset.Manualsegmentationof lesionsonTWI-CE,DWI, and T2 FLAIRimageswasperformed to extract theoptimal radiomics features.Four machine learningalgorithms wereused toconstructradiomicmodelsbasedontheoptimalradiomicsfeatures.Independentclinicalpredictorswereidentifidthrough univariateandmultivariatelogisticregressionanalysis.Acombinedmodelincorporatingthesepredictorsandtheradiomics scorebasedontheoptimalradiomicmodelwasdevelopedtopredictKi-67expresionlevel,andthepredictiveperformance ofthecombinedmodelwasevaluated.Results:Therewere203cases,including89caseswithKi-67highexpresionand 114 cases with low expression.Tumor maximum diameter,peritumoral edema,maximum standardized uptake value( SUVmax ) on 18F -FDGPET/CTwereindependentpredictorsofKi-67expresionlevel.Utimately,19radiomicsfeatureswerescreened out,and fourmachinelearningalgorithmswereusedtoconstructtheradiomicsmodel,among which,thegradientboosting machine(GBM)modelhadahighAUCvalue(O.88forthetrainingsetandO.83fortheexternalvalidationset).The RandomForest(RF)modelfolowed,withanAUCvalueofO.86forthetrainingsetandO.79fortheexternalvalidationset. TheGBMmodelhadhighersensitivityandrecallrate,whiletheRFmodelhadahigheraccuracy.ThecombinedGBMmodel hadthebestpredictiveperformance,withthehighestAUCvaluesforthetrainingsetandexternalvalidationsetbeing 0.92(95%CI0.88-0.96)and0.88(95%CI0.78-0.97),respectively.Calibrationcurvesindicatedgoodcalibrationofthe combinedGBM model.Decisioncurveanalysisshowed thatthecombinedGBMmodelhadahigheroverallnet benefit. Conclusion:AmultiparametricradiomicsmodelcombinedwithclinicalfeaturescanefectivelystratifythepreoperativeKi-67 expression leveL in PCNSL.
Keywords]Machine learning;Radiomics;Primary central nervoussystem lymphoma;Ki-67;Magneticresonance imaging
原发性中枢神经系统淋巴瘤(primarycentralnervoussystemlymphoma,PCNSL)是一种罕见的结外恶性淋巴瘤,主要亚型为弥漫性大B细胞淋巴瘤(diffuse largeB-cell lymphoma,DLBCL),占比超过 90% ,其5年生存率为 30%~40%[1] 。(剩余8689字)