基于改进YOLOv5s的茶叶嫩芽检测

打开文本图片集
摘要:
为提高对茶叶嫩芽识别的准确率,提升自动采摘机器人的工作效率,减少人工采摘成本,提出一种对茶叶嫩芽目标检测的模型。通过拍摄包含白豪早茶叶嫩芽图片,进行筛选后得到179张图像,使用Mosic数据扩增后获得716张图像,建立数据集,按照训练集、测试集和验证集7∶2∶1的比例划分数据集。针对复杂背景下茶叶嫩芽存在重叠以及遮挡所导致的识别精准度低的问题,对YOLOv5s模型进行改动,在骨干网络上增添注意力机制模块SE和CBAM进行比较;Neck网络由原来的PAFPN改为可以进行双向加权融合的BiFPN,Head结构增加浅层下采样的P2模块,提出一种茶叶嫩芽检测的模型。(剩余15516字)