基于改进SPP-x的YOLOv5神经网络水稻叶片病害识别检测

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:针对YOLOv5模型在水稻病害叶片检测计算复杂度高,计算速度慢的问题,提出一种基于改进SPP-x的YOLOv5模型水稻病害叶片识别检测方法。首先,将原主干网中SPP模块中3个不同尺寸(5×5、9×9、13×13)的MaxPool层替换为3个尺寸相同的5×5MaxPool层连接,后面通过1×1卷积层来调整输出特征维数,再将YOLOv5网络中优化器替换为Adam,从而构建新的YOLOv5网络结构。(剩余11008字)

目录
monitor