一种基于小样本声音信号的托辊故障诊断方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:基于深度学习的故障诊断方法对数据集的质量有很高要求,需要大批量数据才能进行良好的模型训练,从而实现准确的故障诊断,而在实际应用中能够采集到的故障信号通常很有限。针对托辊故障声音信号获取困难、样本量少,导致智能故障诊断方法性能受限的问题,提出了一种基于小样本声音信号的托辊故障诊断方法。使用特征转换方法将一维声音信号转换为二维时频图像,将频率域的特征融入进来,以提高数据集对故障特征的表达能力;提出了多种类型时频图结合的数据集扩充方法,将短时傅里叶变换(STFT)、连续小波变换(CWT)、希尔伯特−黄变换(HHT)3种时频分析方法绘制的时频图相结合,以扩充数据集,增加数据样式;引入了深度迁移学习的思想,使用轴承数据集对模型进行预训练,然后使用托辊数据对预训练模型进行微调,以进一步提升模型的识别准确率。(剩余14308字)

monitor