基于SA-PSO混合算法的枪弹全弹道多目标优化方法研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TJ411 文献标志码:A DOI:10.3969/j.issn.1673-3819.2025.04.022

引用格式:,,,等.基于SA-PSO混合算法的枪弹全弹道多目标优化方法研究[J].指挥控制与仿真,2025,47(4):149-155.HUZC,CUX,XUX,etal.Researchonmulti-bjectiveoptimizationmetodforbuletfulltrajectorybasedoA-SOhybrid algorithm[J].Command Control & Simulation,2025,47(4) :149-155.

Abstract:Intheprocessofbuletdesign,theparametersoftheinteriortrajectoryexteriortrajectory,anderminaltrajecto ryareiterdependent,necessitatingacomprehensiveconsiderationoftheentiretrajectoryprocess.Tadressbothoveal performanceand design eficiency,amulti-objectiveoptimization method basedon simulatedannealingand particle swarm optimizationisproposed.Acomprehensiveballsticcalculationmodel isestablished,incorporatingwarheadcharacteristics, interaltrajectory,aerodynamicparameters,external trajectory,andterminal trajectory.Twelvestructuralparametersreselectedasoptimizationvariables.Theoptimizationobjectivesaresetastraveldistance,landing kineticenergy,and penetration thickness,facilitatingcomprehensive trajectoryoptimization.Theweightedsummation methodisemployedtoascertaintheoptimalsolution,withthesimulatedannealing-particleswarmoptimization(SA-PSO)utilizedtoaddresstheoptimizationchallenge.Theresultsdemonstratethatthisapproachconverges totheoptimalsolutionmoreeficientlycomparedto traditionalalgorithms.Compared to the original design,the optimized solution increases landing kinetic energy by 109.97% ,enhances penetration thickness by 75.11% ,and the travel distance is shortened by 30.01% . The proposed method significantly improvesoverallballstic performance.Moreover,thismethod circumvents thedecline inotherobjectives thatcommonlyarises during the optimization ofa single target.

Key words:fulltrajectorydesign;multi-objectiveoptimization;simulatedannealing;particleswarm;hybridalgorithm

在传统的枪弹系统设计过程中,内弹道、外弹道以及终点弹道的设计过程通常相对独立。(剩余9965字)

monitor