基于多模态特征低秩融合的遥感地物要素分类

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP391 文献标志码:A DOI:10.3969/j.issn.1673-3819.2025.04.010

引用格式:,,,等.基于多模态特征低秩融合的遥感地物要素分类[J].指挥控制与仿真,2025,47(4):65-73.LIUWJ,WUXDONGFetalLand-coverclasificatiowithemotesnsingimagesbasedonlowrankfusionofultidalea-tures[J].Command Control& Simulation,2025,47(4):65-73.

Land-cover classification with remote sensing images based on low-rank fusion of multimodal features

LIU Wenjie,WU Xiaoning†,DONG Fuan,ZHANG Jinwen,LI Yiyang,CHEN Yong (NorthAutomatic Control TechnologyResearch Institute,Taiyuan O3OoO6,China)

Abstract:Multimodalremote-sensinglandclassificationaims toachievemoreaccurateandcomprehensiveextractionof land features inremotesensingimagesbyintegratingfeatureinformationfrommultipleremotesensingdatasources.Thisarticle proposesaunified multimodalremote sensing feature clasification network,which includes:a weight sharing backbone network responsibleforextracting preliminary featurerepresentationsfromtheinputdataofeach modality;Themultimodal featurelowrank fusionmoduleperformscrossmodal transmissiononhigh-level semanticfeatures toenhancesemantic interactionbetweenmodalities;Theupsamplingoperationisresponsibleforrestoring thefusedfeaturemaptothesameresolution as the input image. This algorithm achieved 91. 23% OA and 83.28% mIoU in remote sensing land feature classificationtasks,fectivelyallviatingtheproblemsofinsuffiientaccuracyndinsuficientutilizaionofmultimodalinfotion facedbytraditionalsinglemodal remotesensing clasificationmethods throughfeaturelowrank fusion technology,thereby significantlyimproving theperformanceofland featureclassification.

KeyWords:remote-sensing images;land-cover classification;multimodal learning;data fusion

遥感地物要素分类旨在对遥感影像进行精细化分类处理,以区分并标识出图像中每一个像素或独立对象所属的具体类别。(剩余15082字)

monitor