基于增强深度卷积神经网络的滚动轴承多工况故障诊断方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要: 针对现有卷积神经网络无法充分提取滚动轴承时域信号间的关联特征,模型训练所需样本多以及泛化性不足的问题,提出一种基于增强卷积神经网络模型的滚动轴承多工况故障诊断方法。根据滚动轴承转速和采样频率计算轴承单圈故障特征信号长度,采用格拉姆角场编码技术对单圈时域信号完整信息进行编码,生成相应特征图像,使神经网络在视觉上对时域信号关联特征进行学习;利用ACNet网络模型中的非对称卷积对ConvNeXt模型的7×7深度卷积层进行重构:即采用2个3×3,1个1×3和1个3×1的非对称小卷积核以多分支结构组合的形式重构其7×7卷积层,增强ConvNeXt模型的特征提取效率;对ConvNeXt模型中的数据增强模块及学习率衰减策略进行改进,提高ConvNeX模型在小样本训练下的泛化性,以此搭建增强深度卷积神经网络IConvNeXt模型。(剩余21839字)

monitor