基于点击流数据的消费者动态共购网络研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘  要:文章基于消费者点击流数据和网络结构,使用时态指数随机图模型(TERGM)和消费者点击流数据建构了消费者动态共同购买网络,从产品点击次数、相对浏览时间、好评数、差评数和产品入度等维度测度了影响消费者共同购买行为发生的关键变量,并与指数随机图模型(ERGM)进行了比较。结果表明:产品相对浏览时间、好评数和产品入度促进消费者共同购买行为发生,而产品点击次数会降低消费者共同购买可能性;TERGM模型适合于消费者共同购买行为的网络分析,且拟合效果优于ERGM,验证了TERGM模型对消费者共同购买行为的适用性;文章提出点击流的隐式反馈中应加入时间网络结构视角研究对共同购买网络形成的影响,可为推荐系统优化设计提供有益参考。(剩余16723字)

目录
monitor