注册帐号丨忘记密码?
1.点击网站首页右上角的“充值”按钮可以为您的帐号充值
2.可选择不同档位的充值金额,充值后按篇按本计费
3.充值成功后即可购买网站上的任意文章或杂志的电子版
4.购买后文章、杂志可在个人中心的订阅/零买找到
5.登陆后可阅读免费专区的精彩内容
打开文本图片集
摘 要:不平衡数据越来越多地出现在各个领域,而传统机器学习分类算法往往会忽略少数类样本的分类精度,针对此问题,提出一种基于密度峰值聚类改进的欠采样算法。该算法利用信息熵对密度峰值聚类算法进行优化,获取最优截断距离;选取密度距离较大的点作为聚类中心并选取所有聚类中心代表整个多数类数据集。将该文算法与几种欠采样算法进行对比实验,结果表明,该方法有效提高了不平衡数据集中少数类的预测精度。(剩余7683字)
登录龙源期刊网
购买文章
一种改进密度峰值聚类的欠采样算法
文章价格:5.00元
当前余额:100.00
阅读
您目前是文章会员,阅读数共:0篇
剩余阅读数:0篇
阅读有效期:0001-1-1 0:00:00