基于高低阶特征交互学习的点击率预测模型研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:作为在线广告推送中极为重要的环节,准确的点击率预测(Click-Through Rate,CTR)不仅能提升用户体验,更能增加经济收益,减少资源浪费。目前,基于深度学习的CTR预测模型虽然取得了一定成绩,但在高低阶特征交互学习方面存在不兼顾、不充分以及模型可解释性不强等问题。为解决上述问题,文章提出的模型基于压缩交互网络对高阶交互特征进行显式学习,增强可解释性。(剩余3352字)

目录
monitor