基于机器学习的网约车拼车需求预测研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:为了提高拼车需求预测的准确性,提高网约车拼车服务效率,进一步有效缓解交通拥堵问题,该文利用时间特征提取和Kepler优化算法对传统的决策树机器学习模型进行优化,提出了一种区域拼车概率预测模型。基于芝加哥网约车拼车概率数据集进行拼车需求预测的实验,将该模型与传统决策树模型进行比较。结果表明:优化后的模型在预测精度方面优于传统决策树模型,平均绝对误差(MAE)降低了0.044,均方根误差(RMSE)降低了0.054。(剩余10921字)

monitor