小样本条件下基于YOLOv7的小目标检测方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘  要: 低空慢速小目标的监视一直是预警探测领域的重点和难点。目前主流的基于卷积神经网络的目标检测算法主要设计应用于VOC数据集或COCO数据集,在特定场景下检测精度并不理想。YOLO是目前应用最广泛的单阶段目标检测算法之一,在检测速度方面具有独特的优势。利用可见光成像手段获取小型无人机目标图片,基于YOLOv7算法改进了其特征增强网络,提出一种三分支并行特征金字塔网络,以获得更多的小目标上下文语义特征;将改进后的算法与生成对抗网络进行级联,旨在生成更真实的超分辨率图像,从而提高检测精度。(剩余13394字)

monitor