基于多分支HRNet的图像篡改检测与定位模型

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘  要: 传统的篡改方法如拷贝粘贴和拼接已演变为利用深度学习生成的高质量伪造图像,这些篡改技术在图像纹理和细节上留下难以察觉的痕迹,如高频噪声模式的异常、颜色分布的微妙变化,以及边缘区域的不自然过渡。这些痕迹分布在不同分辨率层次和空间位置,增加了检测的难度。现有模型在整合多尺度和多位置特征时存在不足,难以有效捕捉局部细微纹理变化。(剩余16582字)

monitor