基于RIME和1DCNN⁃LSTM⁃Attention的无创血糖预测模型研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘  要: 实现无创血糖检测对于糖尿病患者来说具有重要意义,然而目前市面上的无创血糖仪存在检测精度不高的问题。为了提高无创血糖检测的准确度,基于近红外无创血糖检测仪,构建了1DCNN⁃LSTM⁃Attention混合预测模型,同时引入了霜冰优化算法(RIME)。该模型通过一维卷积神经网络(1DCNN)提取数据中的局部特征,将所提取的特征向量作为长短期记忆(LSTM)网络的输入,捕捉数据中的依赖关系;采用注意力机制(Attention)为LSTM的输出赋予不同的权重,增强关键信息提取;通过RIME算法优化模型参数,避免陷入局部最优解。(剩余10021字)

monitor
客服机器人