基于相似日与加权马尔可夫模型的风力发电功率区间预测

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘  要: 为了提高风力发电功率预测精度,提出一种基于相似日与加权马尔可夫模型的风力发电功率区间预测方法(SWMQ)。风电功率数据与风速数据直接相关。首先对于数据中的异常值和缺失值,通过线箱图法和相关性填补法对数据进行预处理,提高数据的关联性,通过卷积神经网络(CNN)对风速进行预测;然后由预测到的风速数据在历史数据中通过皮尔逊相关系数法寻找相似日,以相似日功率数据为数据集进行加权马尔可夫模型预测;最后通过分位数回归原理对预测区间进行求取,同时建立基于CNN模型、相关性填补、CNN模型和加权马尔可夫模型,以西北某风电场数据进行仿真对比。(剩余10133字)

monitor