拉普拉斯卷积的双路径特征融合遥感图像智能解译方法

打开文本图片集
摘 要: 由于遥感图像存在多尺度变化和目标边缘模糊等问题,对其进行智能解译仍然是一项极具挑战性的工作。传统的语义分割方法在处理这些问题时存在局限性,难以有效捕捉全局和局部信息。针对上述问题,文中提出一种双路径特征融合分割方法DFNet。首先,使用Swin Transformer作为主干提取全局语义特征,以处理像素之间的长距离依赖关系,从而促进对图像中不同区域相关性的理解;其次,将拉普拉斯卷积嵌入到空间分支,以捕获局部细节信息,加强目标地物边缘信息表达;最后,引入多尺度双向特征融合模块,充分利用图像中的全局和局部信息,以增强多尺度信息的获取能力。(剩余13961字)