基于条件GAN的复杂动作图像轮廓智能捕捉研究

打开文本图片集
摘 要: 针对复杂动作本身的高动态性和多样性,传统的图像处理方法难以准确捕捉其轮廓,文中研究基于条件GAN的复杂动作图像轮廓智能捕捉方法,精准了解动作执行情况。该方法利用像素覆盖分割模型来分割原始复杂动作图像,获取复杂动作目标图像,将其作为约束条件输入生成器,经过编解码器处理后输出虚假复杂动作图像轮廓生成结果,判别器将生成器输出的虚假轮廓和真实复杂动作图像轮廓作为输入,在损失函数作用下进行真假判别,并采用反向传输的方式对生成器和判别器的参数进行迭代更新,实现最佳复杂动作图像轮廓智能捕捉。(剩余7353字)