基于深度卷积神经网络的汽车图像分类算法与加速研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘  要: 在非法占用公交车道违规车辆等领域的边缘计算与识别中,针对基于深度卷积神经网络的图像物体分类算法模型算力需求大与边缘设备部署后有限资源的突出矛盾,如何设计边缘计算设备的加速单元以保证分类算法的精度与实时性具有重要意义。针对上述问题,提出一种基于深度卷积神经网络的公交分类算法,该方法在现场可编程逻辑门阵列上实现了公交车图像分类算法的加速。(剩余8038字)

monitor