注册帐号丨忘记密码?
1.点击网站首页右上角的“充值”按钮可以为您的帐号充值
2.可选择不同档位的充值金额,充值后按篇按本计费
3.充值成功后即可购买网站上的任意文章或杂志的电子版
4.购买后文章、杂志可在个人中心的订阅/零买找到
5.登陆后可阅读免费专区的精彩内容
打开文本图片集
摘 要: 提出一种基于粒子群优化(PSO)的随机森林(RF)识别方法。利用PSO算法搜寻最优的RF超参数n_estimators和max_depth,构建了PSO-RF人体活动识别模型。基于华盛顿州立大学CASAS项目数据集的实验共识别30种日常活动。仿真结果表明,PSO-RF模型的识别准确率达到95%,Accuracy、Precision、Recall和F1-score评价指标均优于其他经典的分类模型,具有较好的预测精度和泛化能力,可为智能家居系统个性化服务提供辅助决策。(剩余5786字)
登录龙源期刊网
购买文章
基于PSO的RF模型在人体活动识别中的应用
文章价格:5.00元
当前余额:100.00
阅读
您目前是文章会员,阅读数共:0篇
剩余阅读数:0篇
阅读有效期:0001-1-1 0:00:00