基于标签挖掘和聚类算法的新用户快速兴趣建模

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘  要: 旅游网站上有着数不胜数的景点信息,但是对新用户来说,网站缺少他们的浏览记录、旅游经历等数据,因此很难从众多景点中精确推荐出适合他们的景点。本研究提出了一种通过标签挖掘和聚类算法快速构建新用户兴趣模型的方法,以提高旅游推荐系统中新用户的用户体验感。

关键词: 旅游推荐; 冷启动; 网络文本挖掘; 用户聚类

中图分类号:TP391.1          文献标识码:A     文章编号:1006-8228(2023)05-88-03

Fast user interest modeling for new users using tag mining

techniques and clustering algorithm

Huang Yuhao, Gu Dehao, Hu Yanlin, Zhou Zichu, Zhu Jinyi, Song Shuang

(Nanjing University of Technology,School of Computer Science and Technology, Nanjing, Jiangsu 211816, China)

Abstract: There are countless tourism information on various travel websites, however, the lack of user data such as browsing history or travel experience makes it difficult to recommend the right point of interest for new users. In this paper, a method to quickly build a new user interest model using tag mining techniques and clustering algorithm is proposed to improve the user experience of new users in the travel recommendation system.

Key words: tourism recommendation; cold start; online text mining; user clustering

0 引言

旅游业是一个热门行业,但是由于缺少新用户的数据,旅游网站往往只能根据景点名、评论数、用户评分计算景点的陈列顺序[1],导致推荐效果不理想,用户体验感差,不利于旅游服务的多样化和个性化。(剩余3052字)

monitor
客服机器人