基于YOLOv5m的电机换向器缺陷检测

打开文本图片集
摘要:为降低电机换向器缺陷的检测成本,提高检测效率,满足实际工程中对检测精度和检测速度的均衡要求,以YOLOv5m模型为基础提出优化改进的表面缺陷检测算法,将采集的数据集经Mosica数据增强,提高模型的鲁棒性;在其他层中采用双向特征金字塔网络(bidirectional feature pyramid network,BiFPN)层代替路径聚合网路(path aggregation network,PANet)层,引入双向连接和跨层特征融合机制,同时增加Criss-Cross注意力机制,更好地捕捉输入序列中的相关信息,增强网络在不同尺度下的反馈,并通过消融试验验证。(剩余12657字)