基于梯度提升决策树算法测定LAMOST红巨星分支恒星的化学丰度

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:P145.9 文献标志码:A 文章编号:1673-5072(2025)03-0311-07

Abstract:Taking high-precision asteroseismological Red Giant Branch (RGB) stars from APOKASC-2 with high-resolution spectroscopic parameters as a training sample,We developed a method to estimate the chemical abundances of LAMOST DR5 Red Giant Branch stars precisely.Based on the Gradient Boosting Decision Tree algorithm(GBDT)and the basic atmospheric parameters ( Teff∖logg∖[Fe/H] ),four chemical abundances,[C/Fe]、[Mg/Fe]、[Ca/Fe]and [Ni/Fe],were predicted in this work.The current results are shown on the test set with median errors between O.O2 and 0.04dex . The comparison with other works indicates that the method used in this work is feasible,providing a stage validation for the future promotion of this method in determining the chemical abundance of Red Giant Branch stars.

Keywords:Milky Way disk;Red Giant Branch stars;chemical abundance;machine learning;star catalog

星系的形成与演化是当今天体物理学的重大科学问题,银河系是在多星族六维相空间下研究星系物理的重要参考与基石[1-5]。(剩余9451字)

monitor
客服机器人