基于并行多尺度卷积记忆残差网络的物联网流量预测

打开文本图片集
【摘 要】 针对现有物联网流量预测方法中特征提取不足、丢失重要信息、预测准确度不高的问题,提出了一种基于并行多尺度卷积记忆残差网络的物联网流量预测方法。首先,采用并行结构,CNN提取多尺度的局部特征得到包含有局部特征的序列,LSTM和BiLSTM分别提取前向的时间关系和前后向的时间关系得到有合适比例的前后向时间特征序列;其次,引入ResNet结构,在CNN、LSTM、BiLSTM的输入和输出之间加入跳跃连接,即通过跳跃连接在特征序列中加入原始序列信息;再次,在有原始信息的特征序列中分配可训练的权重参数,突出相应序列的重要性,进行拼接得到总的输出序列;最后,将总的输出序列输入到全连接网络中得到预测结果。(剩余15161字)