基于随机森林算法的南岭东段离子吸附型稀土矿成矿预测

打开文本图片集
中图分类号:P612 文献标识码:A 文章编号:2097-5465(2025)04-0020-08
Metallogenic Prediction of Ion-adsorption Rare Earth Deposits in the Eastern Part of Nanling Based on Random Forest Algorithm
LI Ruodan,LIU Xinxing, ZHANG Juan,GUAN Ziqiong,WANG Kaidi,LIU Meili,WANG Lijie
Hebei GEO University,Shijiazhuang O50031,China
Abstract:Ion-adsorptionrareearthoresareacriticalsoureofstrategicmetalsinSouth China.Thispaperfocusesontheionadsorptinrareearthdepositsintheastenpartofanlingregion.Guidedbytheendogenc-exogenicmetallgenicteory,amultifactorcollaorative metallgenic prediction modelisconstructedbasedonArcGIS platformandrandom forestalgorithm.Ninekey ore-controlingvariableswereextractedbythestructuralbufferanalysis,thenormalizeddiferencevegetationindex(NDVI), calculationof topographicandgeomorphicparameters,includingelevation,slope,surfacecutingdepth,elevationcoeficientof variationandtopographicrelief,anddelineationofthedisrbutionrangeofore-formingparentrocks.Thestudyareawasdivided using a1000m×1 000 m grid unit,generating a balanced data set containing 221 positive samples (mine point units)and an equal number of negative samples.The prediction accuracy of the model test set was 77.6% ,and the AUC value was O.94,showing strong generalizationabilityTepredictionesultsindicatesignificantspatialdiferetiationinmtalogenicprobabilitycrosstestudy area.Cosideringthegeologicalbackgroundandcurrentexplorationstatus,atotaloffivemetalogenicprospectiveareaswere delineated,clasifiedintoAandBlevels,including thrA-levelprospectiveareasandandtwoB-levelprospectingareas.
Keywords:ion-adsorption rare earth type deposit;random forest;metallogenic prediction
来稿日期:2025-03-26 DOI:10.13937/j. cnki. hbdzdxxb.2025.04.003
基金项目:自然资源部离子型稀土资源与环境重点实验室基金(2022IRERE105);国家自然科学基金(41702352);河北地质大学河北省战略性关键矿产协同创新中心开放项目(2024403084)
作者简介:李若丹(2000—),女,黑龙江哈尔滨人,硕士研究生,主要研究方向为离子吸附型稀土矿成矿机制及成矿预测。(剩余9891字)