基于多元变分模态分解和混合深度神经网络的短期光伏功率预测

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:针对传统分解预测方法忽略太阳辐照度等多维气象因素与光伏功率在时域和频域上的耦合关系以及深度神经网络在训练中出现的特征学习效率低、训练速度慢、过拟合等问题,提出基于多元变分模态分解(MVMD)和混合深度神经网络的短期光伏功率预测方法。首先,采用MVMD对光伏功率及多维气象序列进行时频同步分析,将其分解为频率对齐的多元本征模态函数,从而降低序列中非线性和波动性的影响。(剩余19330字)

目录
monitor