基于多类数据处理方法联合分析的运营桥梁安全性预警分级

  • 打印
  • 收藏
收藏成功


打开文本图片集

MA Yaohua

(China National Chemical Construction Investment Group Co.,Ltd.,Beijing 10230O,China)

Abstract::Inorder toreasonablyrealize thesafetyearlywarningclasificationofoperationalbridges,combinedwith the measureddataof denoising processing,the corresponding earlywarning criteria wereconstructedbased ontheaccumulated deformation sequence,rate sequence andacceleration sequence,torealize the multi-source information fusionof he safety earlywarningclasificationofoperational bridges,andfullyensure theaccuracyoftheclassificationresults.Theresultsshow thatPSO-DVMDmodelcanefctivelyremoverandom noisefrombridge deformationdataand issuitable fordenoising bridge deformationdata.Therearesomediffrencesintheearlywarning levelsofdiferentmonitoring pointsormonitoring itemsunder diferentcriteria,andthesafetyearlywarninglevelsofbridgesaredeterminedcomprehensivelyacordingtotheunfavorable principle.Theearly-waringclassficationofoperationalbridgesprovidesaquantitativeclassficationstandardforthesafety evaluation of operational bridges,which is worthy of further popularization and application.

Keywords: bridges; denoising; security early warning; correlation vector machine; trend judgment

0 引言

目前,桥梁工程数量日益增加,其建成后的运营安全显得格外重要,因此,开展运营桥梁的安全性预警分级研究具有重要意义[1-2]。(剩余8308字)

试读结束

monitor