基于数据分解重构和AM-CRU-MLR模型的基坑变形研究与应用

打开文本图片集
WANG Andong, ZHANG Xuegang, NING Bo(Shaanxi Railway Institute,Weinan 7140OO, China)
Abstract:Inorder toefectivelygraspthedeformationcharacteristicsoffoundationpits,basedonthedisplacementand deformation monitoringresultsoffoundationpits,and basedontheanalysisofthecurentdeformationcharacteristicsof foundationpits,the integratedempiricalmodeandsampleentropyareusedtodecomposeandreconstructthedeformationdata, accuratelydecomposingitintoreal deformation termsanduncertaindeformation terms.Furthermore,CRUneural networkand multiplelinearregresionareusedtopreprocessdiferentdeformationterms,achievinghigh-precisionpredictionoffoundation pitdeformation,andusingtheresults tograspthedeformationcharacteristicsoffoundationpits.Theresultsshowsthatthrough datadecompositionandreconstructionprocesing,thedeformationdataoffoundationpitscanbeefectivelydecomposed,andits superiorityisobvious compared totraditional decomposition methods;TheAM-CRU-MLR model showedrelativelybeter predictionacuracy,fullyverifying theefectivenessoftepredictionappoachandproviding theoreticalsupportfortheanalysis of deformation characteristics of foundation pits.
Keywords:foundation pit;deformationdata;decompositiontreatment;deformationprediction;deformationcharacteristics
0 引言
随着市政工程的快速发展,基坑工程数量日益增加,在带来巨大经济效益的同时,也引发了一定的工程问题,如基坑多处于建、构筑物密集区,基坑失稳会引发一系列连续破坏;为确保基坑安全施工,变形控制显得格外重要。(剩余6868字)