II导联心电图中心肌梗死检测与定位:基于多尺度残差模块融合改进通道注意力模型

打开文本图片集
A myocardial infarction detection and localization model based on multi-scale field residual blocks fusion with modified channel attention
WU Qiucen,LUXueqi,WENYaoqi,HONGYong1,WUYuliang²,CHENaomin
choolfoli
HospitalofSouthernMedicalUniversity(DongguanPeople'sHospital),ongguan523o59,China
Abstract:Objective Weproposeamyocardialinfarction (MI)detectionandlocalizationmodelfor improving the diagnostic accuracyforMItoprovideasistance toclinicaldecision-making.Methods The proposed model was constructed basedon multi-scalefieldresidualblocksfusionmodifiedchannelattention(MSF-RB-MCA).ThemodelutilizesleadII electrocardiogam (ECG)signalstodetectandlocaizeMI,andextractsdiferentlevelsoffeatureinformationthroughthe multi-scalefieldresidualblock.Amodifiedchannelatentionforautomaticadjustmentofthefeatureweightswasintroduced toenhancethemodel'sabilitytofocusontheMIregion,therebyimprovingtheaccuracyofMdetectionandlocalization. ResultsA5-foldcros-validationtestofthemodelwasperformedusingthepubliclyavailablePhysikalisch-Technische Bundesanstalt (PTB) dataset.For MI detection,themodelachievedanaccuracyof 99.96% onthe test setwith aspecificityof 99.84% and a sensitivity of 99.99% .For MI localization, the accuracy, specificity and sensitivity were 99.81% 99.98% and 99.65%, respectively.Theperformances of the model forMI detection and localizationweresuperior tothoseof other comparison models.Conclusion The proposed MSF-RB-MCA model shows excelent performance inAI detection and localizationbased onlead IIECGsignals,demonstrating its great potential for application inwearable devices. Kevworde: mvocardial infarctinn: deon learnino: multi-ccale: racidal hlnck: modified channal attantion
根据世界卫生组织(WHO)的数据显示,随着年龄的增长,因心血管疾病(CVD)引发的死亡人数显著上升,其中大多数发生在老年人群中[。(剩余19972字)