注册帐号丨忘记密码?
1.点击网站首页右上角的“充值”按钮可以为您的帐号充值
2.可选择不同档位的充值金额,充值后按篇按本计费
3.充值成功后即可购买网站上的任意文章或杂志的电子版
4.购买后文章、杂志可在个人中心的订阅/零买找到
5.登陆后可阅读免费专区的精彩内容
打开文本图片集
摘 要:针对非接触式电力变压器在监测及运行状态识别过程中存在的问题,提出了一种基于粒子群优化的电力变压器声纹识别技术。通过利用加权优化的线性预测倒谱系数和差分组合的梅尔频率倒谱系数作为变压器声纹识别的特征向量,构建了应用于变压器声纹识别的粒子群优化神经网络模型。实验结果表明,特征向量为线性倒谱系数时,所提模型识别效率要比BP神经网络的识别效率高33%;采用梅尔倒谱系数作为特征量识别准确率比线性预测倒谱系数大约提高了5.3%,平均识别时间缩短了约25%。(剩余6344字)
登录龙源期刊网
购买文章
粒子群优化算法在电力变压器声纹识别中的应用
文章价格:5.00元
当前余额:100.00
阅读
您目前是文章会员,阅读数共:0篇
剩余阅读数:0篇
阅读有效期:0001-1-1 0:00:00