基于改进孤立森林算法的异常用电行为识别方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:针对传统异常用电行为识别方法准确率低、时效性差且人工消耗较高等问题,提出了一种基于粒子群算法的改进孤立森林识别方法。该方法通过总结异常用电行为规律,重构相关行为的特征指标,并侧重于对异常样本的学习与训练,进而在集成算法套袋思想的基础上构建了孤立森林。同时利用粒子群算法的群集寻优能力选择出精准度较高、差异度较大的孤立树形成子集,进一步优化了异常用电行为的识别效果。(剩余5524字)

monitor
客服机器人